
I.J. Computer Network and Information Security, 2014, 5, 42-49
Published Online April 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2014.05.06

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

RSUs Deployment Using Parallel Scheduling

Ramneek kaur
Department of computer science Guru Nanak Dev. University, Amritsar, Punjab, 143001, India.

ramneek4025@gmail.com

Abstract—Advancement in software, hardware and

communication technologies have led to the development

of design and implementation of different types of

networks that are deployed in various environments. One

such network that has gained a lot of interest in the last

few decades is the Vehicular Ad-Hoc Network (VANET).

VANET has become an active area of research,

development and standardization because it has

remarkable potential to improve vehicle and road safety,

traffic management, and also provide comfort to both

drivers and passengers. Roadside units (RSUs) are a vital

component of Vehicular ad hoc network (VANET).

Mainly, the density and location of RSUs decides the

success of a VANET. But, the sky-high deployment costs

of the RSUs make it impossible to deploy a large number

of RSUs on the specific area or road. Thus, there rises a

need to optimally deploy a restricted number of RSUs in

a given region in order to achieve maximum performance.

This paper presents a new TDB based RSUs deployment

algorithm with a goal of attaining high efficiency and

cover maximum area. Matlab platform is used to assess

the performance of the proposed algorithm using several

performance metrics.

Index Terms—VANETs, RSUs Deployment, Parallel

processing, TDB Scheduling.

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETs) represent a

rapidly emerging, particularly challenging class of

Mobile Ad Hoc Networks (MANETs) [1, 2, 3, 4].

VANETs are distributed communication networks built

up from traveling vehicles, and are thus characterized by

very high speed and limited degrees of freedom in nodes

movement patterns.

Vehicular ad hoc network (VANET) involves vehicle

to vehicle (V2V), vehicle to roadside (V2R) or vehicle to

infrastructure (V2I) communication [1, 5, 6]. VANET

generally consist of On Board Unit (OBU) and Roadside

Units (RSUs).Vehicular Networks System consists of

large number of Nodes or vehicles. These vehicles will

require an authority to govern it, each vehicle can

communicate with other vehicles using short radio

signals DSRC (Dedicated Short Range Communication),

this communication is an Ad Hoc communication that

means each connected node can move freely, no wires

required, the routers used called Road Side Unit (RSU),

the RSU works as a router between the vehicles on the

road and connected to other network devices [2].

Each vehicle has OBU (on board unit), this unit

connects the vehicle with RSU via DSRC radios, and

another device is TPD (Tamper Proof Device), this

device holding the vehicle secrets, all the information

about the vehicle like keys, drivers identity, trip details,

speed, routing etc. V2V, V2I and V2R type of

communication is present in Intelligent Transportation

System (ITS) and it is the main component of VANET [3,

5].

Fig 1. System model (adapted from [5])

VANETs can be utilized for a broad range of safety

and non-safety applications [2, 3, 5], allow for value

added services such as vehicle safety, automated toll

payment, traffic management, enhanced navigation,

location-based services such as finding the closest fuel

station, restaurant or travel lodge and infotainment

applications such as providing access to the Internet.

A. System Model

A typical VANET consists of three entities in city

scenarios [6]: the top TA, the fixed RSUs along the road

side, and the mobile OBUs equipped on the running

vehicles.

a. TA: TA [6] is in charge of the registration of the

RSUs and OBUs. TA can reveal the real OBU

identity of a safety message and publishes the CRL

periodically to the RSUs. Moreover, TA can be a

road authority, such as the government. It has the

basic information about streets and traffic statistics,

 RSUs Deployment Using Parallel Scheduling 43

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

and proposes the RSUs deployment plan according

to the tradeoff between the requirements of most

OBUs and the investment budget.

b. RSU: RSUs are erected at intersections for the

considerations of power and management. RSUs

use the same communication technology and the

deployment cost is constant at any intersections.

RSUs connect with TA by wired links [6], and act

as certificate proxies of TA. An RSU can issue

short-time certificates for the OBUs with valid

membership.

c. OBU: Each OBU has a long-term unique identity.

OBUs mainly communicate with each other for

sharing local traffic information, and with the RSUs

for updating the short time certificates. Digital maps

are available for the OBUs. It provides the street-

level map, the communication coverage of RSUs

and the traffic statistics such as vehicle speed on

roads, and traffic signal schedule at intersections [6].

The remainder of this paper is organized as follows. In

Section 2, I have presented related work on vehicular

networks. Section 3 presents the problem formulation for

the deployment of RSUs in VANET. In Section 4, design

methodology is elaborated. Section 5, present the

simulation results that demonstrate the performance of

the proposed optimization algorithm. Section 6,

concludes the paper.

II. RELATED WORKS

Earlier works in optimal placement in VANET [6, 8]

include [4, 6 -14].

Dhamgaye et al. [4] has addressed to the difficulty

faced in designing an efficient routing protocol for

VANET, because of the vulnerability of wireless medium

to attacks. This survey paper gives brief overview of

different routing protocols depending on the availability,

authentication, confidentiality, privacy, non-repudiation

and data trust. Also attempt has been made to identify

major security issues and challenges associated with

different routing protocols.

Sun et al. [6] optimize the location of RSUs such that

vehicle can reach an RSU within some timing constraint,

given by sum of driving time and an overhead time (for

adjusting the route), to update short term certificates. The

optimization scheme may require vehicles to change their

route which may have effects on local traffic condition.

We do not have any route changing condition; we

optimally place the RSUs considering the vehicles

current routes only

Lee et al. [7] seek optimal placement of RSUs to

improve connectivity. Each intersection is considered as

a potential RSU location. These potential locations are

then ordered based on number of vehicle-reports received

within communication range of each RSU. The

placement scheme only considers taxi location reports

and does not consider speed or density of all vehicles.

Li et al. [8] consider the optimal placement of

gateways, which connect RSUs (access points - AP) to

the Internet, while minimizing the average number of

hops from APs to gateways. They consider pervasive

APs such that every vehicle is connected to an AP. They

do not consider vehicle speed, density or movement

patterns.

Lochert et al. [9] use genetic algorithm for optimal

placement of RSUs for a VANET traffic information

system. The optimal placement is to minimize travel for

some fixed landmarks and may not be useful for travel

between any two points in an area.

Zhao et al. [10] optimize placement of Thowboxes,

standalone units that act as relays, to improve contact and

data-rate/throughput within context of a delay tolerant

network. They aim at improving V2V communication

and not the V2I communication.

Fiore et al. [11] optimally place RSUs (Access Points -

AP) in an urban environment to improve cooperative

download of data among vehicles. They aim at placing

the APs at point where maximum vehicles cross each

other, this helps in relaying the data from AP to a

downloading vehicle via other vehicles.

Trullols et al. [12] optimally deploy RSUs

(Dissemination Points – DPs) in an urban area to

maximize the number of vehicles that contact the DPs.

Malandrino et al. [13] optimally deploy the RSUs (APs)

to maximize the system throughput. They consider both

the V2I and V2V communications for optimal placement

of APs. Vehicle trajectory information (time and location)

forms basis of this optimization which may not be

available in many cases.

Zheng et al. [14] optimally deploy APs to improve

contact opportunity; defined in terms of time for which a

user remains in contact with an AP. These optimizations

aims at transfer of data from RSUs to vehicles whereas,

our optimization aims at transfer of data from vehicles to

RSUs with an area coverage constraint. Also, we do not

consider V2V communication in our optimization

problem.

III. PROBLEM STATEMENT

The main motive of this paper is to take advantage of

the benefits of parallel processing for optimally

deploying roadside units across the roads. Research in

Vehicular Ad Hoc Networks (VANETs) has attracted the

attention of both the industry and academia. But it has

been found during the literature survey that the parallel

algorithms have been neglected by most of the

researchers in the field of VANETs. So, in this work an

effort is made to use parallel processing for efficiently

deploying RSUs in VANETs.

This paper deals with utilizing the task duplication

based scheduling algorithms in VANETs, for efficiently

deploying RSUs in given area or road. As shown in

literature survey the cost of the RSUs are too high so it is

not possible to deploy more and more RSUs to cover the

given road, so need of the hour is to deploy them

optimistically, such that the minimum number of RSUs

can cover maximum range. But it is found that optimistic

deployment of RSUs takes too much time i.e. serial time.

44 RSUs Deployment Using Parallel Scheduling

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

So in order to reduce the amount of time required to do

the same, a new „TDB based RSUs deployment

algorithm‟ has been proposed. It will deploy the RSUs in

parallel manner on different processors which will result

in reduction of execution time.

Throughout the paper emphases is on the parallel

algorithm in VANETs, so no other VANET problems are

considered in this research work. The proposed algorithm

is also scalable. It gives better results till 45 no. of RSUs.

IV. DESIGN METHODOLGY

This section contains detail of the scheduling process,

introduction to matlab platform and the proposed

algorithm.

A. Parallel Scheduling

Scheduling and allocation is a highly important issue

since an inappropriate scheduling of tasks can fail to

exploit the true potential of the system and can offset the

gain from parallelization [15]. The objective of

scheduling is to minimize the completion time of parallel

application by properly allocating the tasks to the

processors.

In this paper task duplication based scheduling is

applied for optimizing the placement of roadside units.

The task duplication scheduling provides greater

efficiency and minimum make span time as compared to

other scheduling techniques. The main idea behind the

task duplication based scheduling is utilizing processor

idle time to duplicate predecessor tasks [16]. This can

avoid the transfer of data from a predecessor to a

successor thus reducing the communication cost, network

overhead and potentially reduce the start times of waiting

task. Task duplication scheduling provides better results

than the serial placement of roadside units.

The basic process used to achieve parallelization in

this work includes [17]: Subtask Decomposition,

Dependence Analysis, Scheduling and Programming as

the main steps. The detailed process of parallelization is

explained below with diagram:

Fig 2. Process of Parallelization

 Application Specification: The first step in the

above diagram is to define the application. As in

this dissertation, the application of optimizing

roadside units in vehicular Ad hoc Networks

(VANETs) has been considered.

 Subtask Decomposition: Subtasks are sequential

operations that work together to perform a larger

operation [17]. To structure a parallel program,

it's important to identify tasks at a level of

granularity that results in efficient use of

hardware resources.

 Parallel programming using fork and join

provides great flexibility during the execution of

an application. New tasks can be created in

order to cover the needs of the program.

 Task Scheduling: Scheduling is an important

aspect of parallel tasks. Unlike threads, new

tasks don't necessarily begin executing

immediately. Instead, they are placed in a work

queue [17, 18]. Tasks run when their associated

task scheduler removes them from the queue,

usually as processors/clients become available.

The task scheduler attempts to optimize overall

throughput by controlling the system's degree of

concurrency.

 Programming: The last step in the process of

parallelization is programming. It includes the

executable code which instructs how to run the

application in parallel. For this, there is need to

define some algorithm.

B. Matlab

Matlab platform is used to carry out the computation

results. The name MATLAB short for MATrix

LABoratory [19] is a simple and flexible programming

environment for a wide range of problems such as signal

processing, optimization, linear programming and so on.

MATLAB was developed primarily by Cleve Moler in

the 1970's. MATLAB is a high-performance language for

technical computing. It integrates computation,

visualization, and programming environment.

Furthermore, MATLAB is a modern programming

language environment: it has sophisticated data structures,

contains built-in editing and debugging tools, and

supports object-oriented programming. These factors

make MATLAB an excellent tool for teaching and

research. MATLAB has many advantages compared to

conventional computer languages (e.g., C, FORTRAN)

for solving technical problems.

Matlab provides an interactive software package. It has

inbuilt toolboxes which we have used in calculating

results.

C. The Proposed Algorithm

App. Spec.: Application Specification

Fn : Fork Job

J: Join

Pn : Processor

Exe Prog. : Executable Program

App.

Spec.

Main

Job

 Job

Job F2

J

F1

P1

 Job

Job

F1

P2

 Job

Job

F2

Exe.

Prog

Subtask

Decomposition
Mapping/

Schedulin

g

Program

 RSUs Deployment Using Parallel Scheduling 45

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

The new „TDB based RSU deployment‟ algorithm is

proposed in this work. This algorithm works by using

fork and join technique. The fork divides the job into

equal parts and on each part the algorithm is applied

simultaneously. The flag bit is assigned to each processor

the when which will get free first will set its flag bit and

the coming process will be allocated to that processor.

Following steps are included in the proposed algorithm:

This algorithm is developed and designed in matlab.

The experimental results are obtained by running the

proposed algorithm on matlab. The variance in the results

is achieved by running the algorithm serially and in

parallel for deploying the RSUs.

Quantitative evaluation and modeling of hardware and

software components of parallel systems are critical for

the delivery of high performance. Performance metrics

[20] are used to assess the functioning of algorithm.

Some of them are:

 Sequential Run Time: Time elapsed between

the beginning and end of execution on a

sequential computer. It is usually denoted by Ts.

 Parallel Run Time: Time elapsed from start of

the parallel computation to end of execution by

the last processing element (PE). It is usually

denoted by Tp.

 Overheads: It is represented by an overhead

function (To). It expresses the extra work

carried out by the parallel execution. Total time

spent in solving a problem using p PEs is pTp.

Time spent for performing useful work is Ts and

 the remainder is overhead given by:

 (1)

The total overhead function (To) be an

increasing function of p. For a given problem

size value of Ts remains constant but for the

parallel program the efficiency will go down, if

the numbers of processors are increased. The

overhead of fork-join time take by processors is

also considered in this work

 Speedup: Measures performance gain achieved

by parallelizing a given application over

sequential implementation. It captures relative

benefit of solving a problem in parallel. It is

defined as ratio of time taken to solve a problem

on a single PE to time required to solve the same

problem on a parallel computer with p PEs,

represented as:

 (2)

The p PEs used are assumed to be identical to

the one used by the sequential algorithm.

 Efficiency: Measures fraction of time for which

a PE is usefully employed. It is defined as ratio

of the speedup to the number of PEs. The

efficiency of a parallel program can be written

as:

 (3)

In ideal parallel systems, Speedup is equal to

p, and Efficiency is equal to one. In practice

Speedup is less than p, and Efficiency is

between zero and one.

 Scalability: Scalability metric exhibit the

property of parallel programs to increase their

performance as the number of processing nodes

increases. Total overhead function (To) is a

function of both problem size Ts and the number

of processing elements p. One can

simultaneously increase the problem size and

number of processors to keep efficiency

constant.

 Function Value: Function value represents the

degree of overlapping among the roadside units.

The degree of overlapping should be greater

than zero but as small as possible. No

overlapping represents there is some area which

is left uncovered and high degree of overlapping

leads to more wastage.

Step I: Define the number of RSUs,

 the dimensions of the vanet area or

 road and initially place the first seed.

 Rest of the seeds will be placed

 randomly accordingly.

StepII: Deploy network considering parameters

 in step I.

StepIII: Apply Task Duplication Based

 Scheduling Parallel algorithm using

 fork method. Fork will divide the job

 into equal parts on the basis of the

 number of matlab clients in

 the matlabpool.

StepIV: Apply optimistic RSUs

 deployment algorithm on each

 set separately. The solutions thus

 obtained will be joined.

StepV: If the result thus obtained is

 not optimal then repeat from stepIII,

 until the optimistic deployment

 is achieved.

StepVI: Evaluate parallel parameters and

 compare the results.

StepVII: End.

Sp = Ts /Tp

To = pTp- Ts

E = SP/ P

46 RSUs Deployment Using Parallel Scheduling

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

V. RESULTS AND DISCUSSION

Various parameters have been evaluated by taking

different values of road side units, side dimensions and

random seed placement. Comparisons on the basis of

serial elapsed time, parallel elapsed time, speed up,

efficiency, overheads and function value has been done.

The results are as:

A. Effect of changing number of workers

The results are obtained by changing number of

clients/workers of matlab. The change in workers have

affect on various parameters. The impact of change in

workers on different metrics is as:

Table1. Results for 2 Processors

No.

of

RSU

s

Serial

Time

Para

llel

Time

Speed

up

Efficie

ncy

Overh

eads

Functi

on

value

10 2.12 .88 2.41 .60 .35 .0160

20 2.83 1.90 1.49 .37 1.19 .0970

30 9.74 7.23 1.35 .34 4.80 .2074

40 45.13 31.83 1.42 .35 20.55 .43017

49 258.83 173.6 1.49 .37 108.98 2.418

Table 2: Results for 4 Processors

No.

of

RSUs

Serial

Time

Para

llel

Time

Speed

up

Efficie

ncy

Overh

eads

Functi

on

value

10 2.12 1.01 2.099 .53 .52 .0160

20 2.83 1.90 1.49 .37 1.68 .0970

30 9.74 6.90 1.41 .35 5.05 .2074

40 45.13 31.04 1.45 .36 17.16 .43017

49 258.83 129.0 2.00 .50 75.1 2.418

Table 3: Results for 6 Processors

No.

of

RSUs

Serial

Time

Para

llel

Time

Speed

up

Efficie

ncy

Overh

eads

Functi

on

value

10 2.12 1.40 1.54 .38 .86 .0160

20 2.83 2.62 1.08 .27 1.92 .09704

30 9.74 7.58 1.26 .32 5.19 .2074

40 45.13 30.33 1.49 .37 19.01 .4307

49 258.83 119.3 2.16 .36 72.74 2.508

Table 4: Results for 8 Processors

No.

of

RSUs

Serial

Time

Paral

lel

Time

Speed

up

Efficie

ncy

Overh

eads

Functi

on

value

10 2.12 1.87 1.18 .29 1.32 .0160

20 2.83 2.52 1.02 .26 1.88 .0970

30 9.74 8.52 1.16 .29 6.05 .2074

40 45.13 32.59 1.40 .35 21.17 .43017

49 258.83 119.5 2.16 .27 71.69 2.418

The plots below shows the variance of serial elapsed

time, parallel elapsed time, speed up, efficiency and

overheads with the change in number of road side units,

side dimensions and no. of workers/clients of mat lab.

B. Serial and Parallel Elapsed Time

In this section, serial and parallel elapsed time is

computed for running the algorithm. The results are taken

by changing the number of roadside units, the number of

side dimensions and the number of workers.

 Effect of changing Roadside Units

Fig.3 shows the variance of serial elapsed time and

parallel elapsed time with the increase in number of road

side units. It shows that the serial elapsed time increases

significantly with increase in the number of road side

units. Initially for 8 and 12 RSUs the serial elapsed time

is more than the parallel elapsed time. After 20 RSUs the

serial elapsed time is much more than the parallel elapsed

time.

Fig 3. Plot showing no. of RSUs and serial and parallel time

 Effect of changing side dimensions

Fig.4 shows the variation of serial time and parallel

time against the changing side dimensions. It presents

that what will be the effect of changing side dimensions

on the serial elapsed time and parallel elapsed time.

Fig 4. Plot showing effect of side dimensions on serial and parallel

elapsed time

0

50

100

150

200

8 12 20 27 32 40

Serial

Elapsed

Time (Secs)

Parallel

Elapsed

Time (Secs)

No. of RSUs

0

20

40

60

80

100

120

140

160

4 6 8 10 12

Serial

Elapsed

Time (Secs)

Parallel

Elapsed

Time (Secs)

Side Dimension (metres)

 RSUs Deployment Using Parallel Scheduling 47

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

Fig.4 shows that with increase in side dimension serial

elapsed time increase to certain limit and then varies

irregularly. As in Fig.4 we can see that serial elapsed

time increases up to 6metres side and after that at 8meters

dimension it falls and at 10 meters it again rises but a

little. Similarly parallel time increases but not much as

compared to serial time and then falls and become almost

constant. It concludes that you can get better parallel

results by increasing side dimensions up to a certain limit.

 Effect of changing number of workers/processors

Fig.5 shows the variation of parallel time with the

change in the number of workers or processors. The

matlab workers could be varied from 2 to 8. The results

have been taken for the fixed number of RSUs and side

dimensions. This plot is obtained from 40 numbers of

RSUs and 20 meters side dimension. It shows parallel

time is minimum for 6 processors

Fig 5. Variation of parallel time with change in processors

C. Speedup and Efficiency

In this section results are evaluated by changing the

number of RSUs, the side dimensions and the number of

processors. The variation is shown below:

 Effect of changing number of RSUs.

Fig.6 shows the variation of speedup and efficiency

with increase in number of RSUs. The speedup increases

significantly with increase in number of RSUs. But

increase in efficiency is small.

Fig 6. Change in speedup and efficiency with change in Processors

 Effect of changing side dimensions

Fig.7 shows the measure of speedup and efficiency

against the increasing side dimension. It shows that the

speedup up to a certain limit decreases with increase in

side dimensions (here the number of RSUs is fixed say

30) after that it rises and again falls to a certain fixed

value. The decrease in speedup shows that increase in

side dimension up to a certain limit gives less parallel

RSU deployment time. The efficiency is almost constant.

It shows small fluctuations with increase in side

dimensions.

Fig 7. Plot showing speedup and efficiency against changing

dimensions

 Effect of changing number of processors on speedup

Fig.8 shows the variation in speedup due to the change

in number of processors. The plot shows different

behavior with different number of RSUs. As in figure the

speedup for 10 RSUs fall due to more overheads. But for

40 RSUs the speed up increases and then becomes

constant.

Fig 8. Plot showing processors and speedup

 Effect of changing number of processors on

efficiency

Fig.9 represents the change in efficiency with the

change in number of processors. Efficiency is also

decreasing with the increase in number of processors for

10 RSUs. For 40 RSUs, the efficiency firstly increases

for 4 processors and further it decreases slowly.

29.5
30

30.5
31

31.5
32

32.5
33

2 4 6 8

Parallel Elapsed Time (Secs)

Parallel

Elapse

d Time

(Secs)

 No. of Processors

0

0.5

1

1.5

2

8 12 20 27 32 40

Speed

up
Efficien

cy

 No. of RSUs

0

0.5

1

1.5

2

2.5

4 6 8 10 12

Speed Up

Efficienc

y

Side Dimensions (metres)

0

0.5

1

1.5

2

2.5

3

2 4 6 8

Speed up for

10 RSUs

Speed up for

40 RSUs

Processors

48 RSUs Deployment Using Parallel Scheduling

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

Fig 9. Plot showing efficiency and processors

D. Overheads

An overhead is the extra amount of work done for

running the parallel algorithm. The variation of

overheads with number of processors and number of

Roadside units is given below:

Fig 10. Plot showing RSUs and overheads

 Effect of number of roadside units

As shown in the Fig.10 the overheads increases with

increase in the number of roadside units. Firstly there is

small increase in overheads but when the RSUs are

increased above 40, there is significant increase in

overheads (for 6 processors and 20 side dimension).

 Effect of number of Processors

Fig.11 shows the variation in overheads due to

increase in number of processors. The overheads faced

here will be mainly due to the time required to deploy the

roadside units and time wasted in establishing connection

with the specific number of workers. For 10 RSUs the

overheads are very low as compared to 40 RSUs, there is

slight increase for more number of processors

Fig 11. Plot showing processors and overheads

For 40 RSUs , initially for 2 processors overheads is

less but for 4 number of processors both type of

overheads increases (for a fixed side dimension) so curve

rises here. When number of processors is increased to 6

the overheads fall because here is only the overhead of

connecting to workers, the overhead for RSU deployment

is reduced to minimum. For 8 processors, the overheads

again increase.

E. Scalability

It approves the applicability of the algorithm even

when the number of roadside units is increased or the

number of workers is varied. The results achieved by

changing number of RSUs and processors are shown

below:

Table 5: Results for 8 Processors

No.

of

RS

Us

1

Proces

sor

2

Proces

sors

4

Process

ors

6

Proces

s

ors

8

Process

ors

10 2.12 .88 1.01 1.40 1.87

20 2.82 1.90 1.90 2.62 2.72

30 9.57 7.23 6.90 7.58 8.52

40 45.13 31.83 31.04 30.33 32.59

49 200.12 170 129.04 119.30 119.65

Table 5 shows that different number of processors

provides different results with different number of

roadside units. Small number of processors provides

optimized deployment for small number of RSUs and

larger number of processors provides the same with large

number of RSUs.

Fig 12. Efficiency variation with increase in problem size and machine

size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8

Efficiency

for 10

RSUs

Efficiency

for 40

RSUs

0

20

40

60

80

10 20 30 40 49

Overheads

Overhead

s

0

5

10

15

20

25

2 4 6 8

Overheads

for 10 RSUs

Overheads

for 40 RSUs

Processors

0

0.1

0.2

0.3

0.4

2 4 6 8

Efficiency

Efficiency

 P
ro

b

le
m

S
iz

e

Machine Size

 Processors

No. of RSUs

 RSUs Deployment Using Parallel Scheduling 49

Copyright © 2014 MECS I.J. Computer Network and Information Security, 2014, 5, 42-49

F. Function value

It gives the degree of overlapping in the roadside units.

The function value changes with the change in the

number of RSUs and side dimension. But has no effect of

change of number of workers. As shown in the Fig. 13,

for a fixed side dimension, the function value increases

with increase in number of RSUs. But for a fixed number

of RSUs, the function value will decrease with increase

in side dimension.

Fig 13. Plot showing RSUs and Function value

VI.CONCLUSIONS AND FUTURE SCOPE

The main contribution of this paper is the development

of parallel scheduling algorithm to deploy the roadside

units in VANETs. The „TDB based RSUs deployment‟

algorithm has been proposed for optimizing the

placement of networked roadside infrastructure

supporting units. The maximization of the network

coverage and minimization of cost are considered as

conflicting objectives to be achieved. It is shown that the

task duplication scheduling provides greater efficiency

and minimum make span time. The steps used to achieve

parallelization process are elaborated. Related analysis

for the optimistic deployment of RSUs is also presented.

The results show that all the parameters vary with the

change in the number of roadside units and side

dimensions. The considerable inferences are also drawn

from the results.

With the increase in number of RSUs the increase in

parallel elapsed time is less as compared to the large

increase in serial elapsed time. Thus the proposed

algorithm has great implication for large number of RSUs.

The proposed algorithm is scalable in terms of problem

size and number of processors. Some of the evaluation

metrics important to assess the effectiveness of a

parallelization process are also evaluated.

In the near future research work can be extended in

making this approach more suitable for realistic world. In

this paper more emphasis is on parallel processing. But

there are great number of issues in VANETs e.g. road

side accidents, traffic jams, speed control, free passage of

emergency vehicles and unseen obstacles and several

other factors like the type of the road, daytime, weather,

traffic density etc. which can be considered in future.

REFERENCES

[1] M.Fiore, J.Harri, F. Filali, C.Bonnet. Vehicular Mobility

Simulation for VANETs, Proceedings of the 40th Annual

Simulation Symposium, IEEE, 2007.

[2] G.Samara, W. A.H. Al-Salihy, R. Sures. Security Issues

and Challenges of Vehicular Ad Hoc Networks (VANET),

Universiti Sans, p. 393-398, 2010.

[3] S. Zeadally, R.Hunt, Y.Shyan, A. Irwin, A. Hassan.

Vehicular ad hoc networks (VANETS): status, results, and

challenges, Springer Science, p. 217-241, 2012.

[4] Anup Dhamgaye, Nekita Chavhan. Survey on security

challenges in VANETS, IJCSN, Vol2, Issue 1, ISSN

(Online): 2277-5420, 2013.

[5] C. Zhang, P.Han Ho, J.Tapolcai. On batch verification

with group testing for vehicular Communications, Springer,

p. 1851–1865, 2011.

[6] Y. Sun, X. Lin, R. Lu, X. Shen, J. Su. Roadside Units

Deployment for Efficient Short-time Certificate Updating

in VANETs, IEEE ICC 2010 proceedings, 2010.

[7] J. Lee and C. Kim, “A roadside unit placement scheme for

Vehicular Telematics networks”, AST‟2010.

[8] P. Li, X. Huang, Y. Fang and P. Lin. Optimal placement of

gateways in Vehicular Networks, IEEE Transactions on

Vehicular Technology 2007, Vol. 56/ 6, pt 1, p. 3421-3430,

2007.

[9] C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke

and M. Mauve. Data aggregation and roadside unit

placement for a VANET traffic information system, ACM,

VANET, 2008.

[10] W. Zhao, Y. Chen, M. Ammar, M. Corner, B. Levine and

E. Zegura. Capacity Enhancement using Throwboxes in

DTNs, MASS 2006.

[11] M. Fiore, J. Barcelo-Ordinas. Cooperative downloads in

urban vehicular networks, MASS 2009.

[12] O. Trullols, M. Fiore, C. Casetti, C.F. Chiasserini, J.M.

Barcelo Ordinas. Planning roadside infrastructure for

information dissemination in intelligent transportation

systems, Computer Communications, Vol. 33/ 4, p. 432-

442, March 2010.

[13] F. Malandrino, C. Casetti, C. Chiasserini, M. Fiore.

Content downloading in vehicular networks: What really

matters, INFOCOM, 2011.

[14] Z. Zheng, Z. Lu, P. Sinha, S. Kumar. Maximizing the

Contact Opportunity for Vehicular Internet Access,

INFOCOM‟2010.

[15] Y.-K. Kwok and I. Ahmad. Benchmarking the task graph

scheduling algorithms. IPPS/SPDP, 1999.

[16] Ranjit Rajak. A Novel Approach for Task Scheduling in

Multiprocessor System, International Journal of Computer

Applications (0975 – 8887) Volume 44, No11, April 2012.

[17] Oliver Sinnen. Task Scheduling for Parallel Systems, John

Wiley and Sons, 2009.

[18] Thomas G.Price. An analysis of central processor

scheduling in multiprogrammed computer systems,

Stanford Univ, October 1972.

[19] D.Houcque, Introduction to MATLAB for Engineering

Students, northwestern University, version-1.2, Aug 2005.

[20] S.S.Kadam, Performance Metrics for Parallel Systems, C-

DAC, Pune, 2007.

Ramneek kaur, born in 1988. She has received B.Tech degree

from DAV Institute of Engineering and Technology, jalandhar,

state- Punjab. She has completed Master of Technology in

Computer Science from Guru Nanak Dev University, Amritsar

in India. Her research area includes parallel computing.

0

20

40

60

80

100

120

10 20 30 40 49

Function Value

Function

Value

No. of RSUs

